Tarski’s extension theorem for group-valued charges
نویسندگان
چکیده
منابع مشابه
Witt's Extension Theorem for Mod Four Valued Quadratic Forms
The mod 4 valued quadratic forms defined by E. H. Brown, Jr. are studied. A classification theorem is proven which states that these forms are determined by two things: whether or not their associated bilinear form is alternating, and the rj-invariant of Brown (which generalizes the Arf invariant of an ordinary quadratic form). Particular attention is paid to a generalization of Witt's extensio...
متن کاملCommon fixed point theorem for nonexpansive type single valued mappings
The aim of this paper is to prove a common fixed point theorem for nonexpansive type single valued mappings which include both continuous and discontinuous mappings by relaxing the condition of continuity by weak reciprocally continuous mapping. Our result is generalize and extends the corresponding result of Jhade et al. [P.K. Jhade, A.S. Saluja and R. Kushwah, Coincidence and fixed points of ...
متن کاملSingle Valued Extension Property and Generalized Weyl’s Theorem
Let T be an operator acting on a Banach space X, let σ(T ) and σBW (T ) be respectively the spectrum and the B-Weyl spectrum of T . We say that T satisfies the generalized Weyl’s theorem if σBW (T ) = σ(T ) \E(T ), where E(T ) is the set of all isolated eigenvalues of T . The first goal of this paper is to show that if T is an operator of topological uniform descent and 0 is an accumulation poi...
متن کاملExtension of Krull's intersection theorem for fuzzy module
In this article we introduce $mu$-filtered fuzzy module with a family of fuzzy submodules. It shows the relation between $mu$-filtered fuzzy modules and crisp filtered modules by level sets. We investigate fuzzy topology on the $mu$-filtered fuzzy module and apply that to introduce fuzzy completion. Finally we extend Krull's intersection theorem of fuzzy ideals by using concept $mu$-adic comp...
متن کاملEgoroff Theorem for Operator-Valued Measures in Locally Convex Cones
In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1984
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1984-0722419-2